(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
min(x, .(y, z)) →+ if(<=(x, y), min(x, z), min(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [z / .(y, z)].
The result substitution is [ ].
The rewrite sequence
min(x, .(y, z)) →+ if(<=(x, y), min(x, z), min(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [2].
The pumping substitution is [z / .(y, z)].
The result substitution is [x / y].
(2) BOUNDS(2^n, INF)